Head & Neck Oncology

Oral presentation

Open Access

Characterization of laryngeal carcinoma by confocal endomicroscopy

Muriel Abbaci*¹, Stephane Temam², Odile Casiraghi³, Philippe Vielh³, Jacques Bosq³, Pierre Fouret³ and Corinne Laplace-Builhé¹

Address: ¹Cell imaging and Flow cytometry, Institut Gustave Roussy, Villejuif, France, ²Department of Otorhinolaryngology and Head and Neck Surgery, Institut Gustave Roussy, Villejuif, France and ³Department of Pathology, Institut Gustave Roussy, Villejuif, France

from 1st Scientific Meeting of the Head and Neck Optical Diagnostics Society London, UK. 14 March 2009

Published: 28 July 2009

Head & Neck Oncology 2009, I (Suppl 1):O14 doi:10.1186/1758-3284-1-S1-O14

This abstract is available from: http://www.headandneckoncology.org/content/1/S1/O14 © 2009 Abbaci et al; licensee BioMed Central Ltd.

Aim

Confocal Endomicroscopy (CEM) is a non invasive imaging tool enabling "optical biopsies" of tissues at cellular level. Clinical studies have successfully reported the accuracy of CEM for the characterization of gastrointestinal, dermatologic and ocular diseases. In this study, we assess the potential use of endomicroscopy in combination with fluorophores clinically approved, to characterize premalignant and malignant lesions in human larynx.

Materials and methods

Twenty-seven fresh pharyngo-laryngectomy surgical specimens were obtained. Normal mucosa, premalignant lesions, and tumoral squamous cell carcinoma were analysed. Five different dyes able to stain cell structures or extracellular matrix were evaluated alone or combined. *En face* images were achieved using both fibered confocal microscopy and conventional confocal microscopy. CEM and confocal images were then compared to the corresponding histological sections.

Results

In normal mucosa samples, a homogeneous and regular nuclear distribution was showed in squamous epithelium with both CEM and confocal imaging. Expected changes in cell density were also seen in basal, intermediate and superficial layers. Imaging of squamous cell carcinoma provided clear information on the heterogeneous distribution of tumour cells surrounded by stroma. Cellular

anomalies and disorders of keratinisation such as dyskeratosis and keratin pearls were also discerned by CEM and the images corroborated with histological data.

Conclusion

Our results demonstrated the promising use of fluorescence endomicroscopy for discriminating cancerous and non cancerous region in larynx.

^{*} Corresponding author