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Abstract

missense mutation that often accumulate in cancer cells.

at IARC p53 database.

head and neck cancer, an area where literature is scarce.

Background: Although TP53 mutations in human tumours generally have been extensively studied, the
significance of p53 in the aetiology of head and neck cancers is still incompletely characterized. In recent years,
considerable interest has been focused on mutant forms of p53, the abnormal protein product of TP53 alleles with

Methods: We compared the nature of TP53 mutations in primary 46 head and neck squamous cell carcinomas
(HNSCCQ) analyzed by PCR-SSCP and sequencing, immunohistochemistry, and using structural information available

Results: Sequencing confirmed 36 TP53 mutations in 23 tumours of the 39 mutations in 26 tumours found by
PCR-SSCP. Only half (17) putatively affect the function of p53 protein. Of these 8 were in the L2 domain, three
affected the LSH motif and three the L3 domain. Three were in other domains. Codon 259 (GAC > GAA) which is a
very rare mutation was found in 4 samples in our study. There were indications of p53 aberrations being
associated with the combined effect of smoking, alcohol and work history. Patients with a negative family history
of cancer had more often TP53 mutations than patients with a positive family history (71% vs. 46%).

Conclusions: Our study contributes to the knowledge of cumulative chemical exposure and p53 aberrations in

Introduction

Carcinomas of the head and neck are among the most
common types of cancer [1] and as such represent a
major health problem. Although it is difficult to distin-
guish the effects and risks of individual carcinogens
from all other exposures, it is clear that head and neck
squamous cell carcinoma (HNSCC) is epidemiologically
strongly associated with alcohol consumption and expo-
sure to tobacco smoke [2]. The probability of developing
the cancer increases with the amount of tobacco and
alcohol consumed [3,4]. Associations between head and
neck cancer risk and exposures to other environmental
and occupational factors have also been proposed [5].
Putative occupational risk factors include nickel refining,
woodworking, and exposure to textile fibres. Moreover
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most studies suggest that oral cancer patients have a
history of diet low in fruit and vegetables [6]. In addi-
tion, human papillomavirus (HPV) infection has been
associated with some HNSCC subgroups, mostly cancer
in oropharynx [7,8]. A synergistic effect between expo-
sures is likely, because synergism has been demonstrated
between smoking and radon or asbestos in lung cancer
and oesophageal cancers [4,9].

Aberrations of p53 are the most frequent molecular
events in human cancers. The TP53 tumour suppressor
gene in chromosome 17p13.1 encodes the p53 protein
involved in many key events in the cell like regulation
of cell cycle and glucose metabolism in cancer cells,
DNA -repair, apoptosis, and senescence and induced by
various stress signals, including DNA-damage and
inflammation [10,11]. In both mice and humans, germ
line mutations in 7P53 result in a strong predisposition
to cancer [12]. Indeed, Gadea and co workers (2007)
showed that a loss of wild-type p53 function was
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enough by itself to confer an increased migratory capa-
city to cells [13]. It has been shown that there are less
TP53 mutations in the setting of HPV infection [14,15].
The biological basis for this is provided by the fact that
the HPV E6 oncoprotein specifically inactivates wild-
type p53. In this way the high-risk HPV E6-mediated
degradation of the p53 protein is probably an alternative
pathway for a “classical” mutation to knock-out the p53
regulated pathways [15,16]. Analysis of TP53 mutational
patterns has shown its usefulness in at least two main
areas [17,18]. Firstly, knowledge of the position of muta-
tions has helped to better understand the functions of
various domains of the p53 protein and their involve-
ment in mediating the suppressive functions that are
inactivated in cancer. Secondly, it has been shown that
the patterns of mutations may vary according to the
nature of etiological agents implicating the use of TP53
mutation spectrum as a biomarker of environmental
aetiology. Most of TP53 mutations described in the
IARC TP53 mutation database affect exons 5-8, which
constitute the site-specific, DNA-binding domain [19].
This region encodes for residues 130-286, also the most
important region for folding and stabilization of the ter-
tiary structure of p53 protein. Less than 2% of the muta-
tions are found in the N- and C-terminal regulatory
domains. The crystal structure of the core domain,
solved in 1994, provides a template for understanding
the nature of mutant p53 [20]. The structure contains a
B-sandwich scaffold and a DNA-binding surface, includ-
ing a loop-sheet-helix (LSH) motif and two loops (L2
and L3) tethered by a single zinc atom. Different muta-
tions have very different consequences for the function
of p53 protein. However, mostly mutation frequencies
in tumours have been reported and less attention has
been paid to the connection of functional state of the
mutated p53 with clinical and environmental aspects of
cancer. Most of the TP53 mutations in human cancers
are missense mutations [17], that can either cause a loss
of tumour suppressor function (LOF) or, in some cases,
a gain of oncogenic function (GOF) [21,22]. In addition
to various degree of LOF, some mutant proteins inhibit
the functions of the wt allele by a dominant-negative
effect [19]. Recent studies have been carried out in an
attempt to provide an explanation for the structural
effects of most disease-related TP53 mutations [23,24]
and functional impact of TP53 mutations [25,26].

In this study, we have analyzed p53 aberrations in pri-
mary head and neck cancer patients with information of
their chemical exposures. Although the association
between smoking and alcohol with head and neck can-
cers is well-known and quite strong [2], and it is clear
that p53 aberrations in general are important in human
cancers, it is not known whether p53 aberrations are
associated with environmental exposures in head and
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neck cancers. The 46 head and neck cancers analyzed in
this paper provide a significant addition the data in
IARC TP53 mutation database, especially due to the
known environmental exposures.

Materials and methods

Patients and tumours

The study population consisted of North Finnish
patients diagnosed with a primary head and neck squa-
mous cell carcinoma in the University Hospital of Ouly,
Finland between the years 1994 and 1996. The patients
were recruited to the study when entering to hospital.
Details of the cases are given in Table 1. In each case, a
questionnaire was filled about smoking, alcohol con-
sumption and work place with a possibility of exposure
to chemicals at work, as well as the family history.
Questions were asked during the first contact with the
cancer clinic by an experienced doctor or nurse. An

Table 1 Clinicopathological variables and p53 status in
patients of head and neck carcinoma

Patient n TP53 mutation n/n  p53 ihc positive n/n
characteristics (%) (%)
All patients 46 26/46 (56.5%) 24/46 (52.2%)
Sex
Male 31 18/31 (58.1%) 19/31 (61.3%)
Female 15 8/5(53.3%) 5/15 (33.3%)
Age, years
< 39 3 3/3 (100.0%) 2/3 (66.7%)
40-65 23 13/23 (56.5%) 10/23 (43.5%)
> 66 20 10/20 (50.0%) 12/20 (60.0%)
Anatomical diagnosis
Oral cavity 14 9/14 (64.3%) 4/14 (28.6%)
Larynx 24 13/24 (54.2%) 19/24 (79.2%)
Pharynx 6 4/6 (66.7%) 1/6 (16.7%)
Others 2 0/2 (0%) 0/2 (0%)
Grade
Grade 1 10 5/10 (50.0%) 5/10 (50.0%)
Grade 2 29 17/29 (58.6%) 14/29 (48.3%)
Grade 3 7 4/7 (57.1%) 5/7 (71.4%)
TNM classification
T2 29 14/29 (483%) 17/29 (58.6%)
T34 17 12/17 (70.6%) 7/17 (41.2%)
No 23 14/23 (60.9%) 13/23 (56.5%)
N, 23 12/23 (52.2%) 11/23 (47.8%)
Stage
I 6 4/6 (66.7%) 3/6 (50.0%)
I 9  4/9 (444%) 7/9 (77.8%)
Il 20 11/20 (55.0%) 10/20 (50.0%)
% 11 7/11 (63.6%) 4/11 (36.4%)
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Table 2 The points of the exposure index
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Exposure Tobacco exposure description Alcohol exposure description Chemical/dust

points exposure description

0 Non-smoker No alcohol consumption No exposure

1 Pack years 1-10 Occasionally (1-2 times/month)

2 Pack years 11-45 Weekly (1-2 times/week) Exposure to a chemical and/or dust
3 Pack years over 45 Daily (heavy drinking)

exposure index (Table 2) was calculated using the data
from the structured questionnaire on lifestyle and work
history, as well as on the exposure to chemicals. The
maximum rating was eight points including 0-3 points
from tobacco exposure, 0-3 points from alcohol con-
sumption and 0-2 points from possible exposure to che-
micals and/or dust.

Ethical aspect

The study design was approved by the local Research
Ethics Committee of the Medical Faculty and University
Hospital at the University Of Oulu, Finland (14.3.1994)
and a written informed consent was obtained from all
patients entering the study, after both oral and written
information was given to the patients about the study.
Patients were interviewed by hospital personnel (a doc-
tor or a nurse) and the coded data was stored in a safe
place by the researches. The study did not interfere with
the clinical treatment of the patients.

TP53 mutation analysis strategy

Mutations in exons 5-8 of the TP53 gene were analyzed
by a temperature-controlled non-radioactive single-
strand conformation polymorphism (SSCP) analysis
[27,28]. A sample was judged to be positive for a TP53
mutation in SSCP only if two independent amplified
PCR products contained similar shifted band patterns.
The types of the TP53 mutations were further analyzed
by semi-automatic sequencing.

Analysis of TP53 mutations with single-strand
conformation polymorphism (SSCP)

Exons 5-8 of the TP53 gene were separately amplified by
PCR using two sets of intron primers, the second set
internal to the first (nested primers) [29]. Dynazyme
DNA polymerase and the corresponding buffer (Finn-
zymes, Espoo, Finland) were used in the polymerase
chain reaction (PCR) with other reagents and under the
reaction conditions described previously [28]. To check
for possible contamination, the first and the last reac-
tions in each PCR series were controls with no template
in the reaction. If a band appeared indicating contami-
nation, the whole series of concurrent PCR reactions
was discarded. The amplified products were purified
by agarose gel electrophoresis, as described earlier [28].

In this non-radioactive SSCP method the use of two
running temperatures in combination with other opti-
mized conditions ensures 98% efficiency in mutation
detection within the studied exons [27]. Pharmacia
PhastSystem® semi-dry electrophoresis equipment was
used for SSCP, as described earlier [28]. Two different
temperatures (4°C and 20°C) were used to obtain good
efficiency. Both negative and positive controls were
included in each run to ensure the quality of the run.
As a negative control, gel-purified, amplified normal
TP53 DNA was used. The controls were confirmed to
be negative by identical band patterns compared to for-
mer controls, and sequenced to be wild-type. As a posi-
tive control, DNA was amplified using artificially
mutated primers [27]. The gels were stained with silver
staining kit (Pharmacia Biotech, Finland) according to
the instructions from the manufacture.

Sequencing of TP53 gene

Once a mutation was detected by the presence of simi-
lar band shifts in SSCP from two independent PCR, the
PCR amplified samples were sequenced with ABI
PRISM 3100 sequencer and BigDye Terminator Sequen-
cing Kit (Applied Biosystems, Foster City, CA).

Analysis of the effect of TP53 mutation

IARC TP53 mutation database (R13, released in Novem-
ber 2008) was searched for the mutations found in this
study [19]. The mutation validation tools were used to
check the mutation data for base substitutions in the
coding sequence of TP53. The following information
was used: the precise description of the mutation event
at the DNA and protein level, the observed (in experi-
mental cell assays [30] or predicted (by amino-acid con-
servation rules or structural analysis) functional impact
of the mutation, and the number of times it has been
reported as a somatic or germ line mutation in the
IARC TP53 database. A combination of standard struc-
tural criteria as described by Martin et al. (2002) was
also used [24]. The following changes were considered
to have probable functional consequences: changes in
amino acids involved in hydrogen bonding (as already
described by Baker and Hubbard 1984) [31], substitu-
tions with amino acids too large to fit in the place (resi-
due clashes), mutations to proline (cyclic side chain in
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proline creates a stricter backbone than other amino
acids), mutations substituting glycine (able to adopt con-
formations sterically hindered for other amino acids), or
substitutions leading to changes in direct contact with
DNA or zinc binding [24].

p53 immunohistochemistry

Paraffin embedded sections (4 um) were stained using
the avidin-biotin-immunoperoxidase technique. Dewax-
ing (Histo-Clear®, National Diagnostic, Atlanta, GA,
USA) and blocking of endogenous peroxidase and non-
specific binding were carried out first. Mouse mono-
clonal antibody (DO-7, 1:300, Novocastra Laboratories
Ltd., Newcastle upon Tyne, UK) for p53 was used as the
primary antibody. The antibody recognizes both wild
type and mutant forms of human p53 and the epitope is
located between the amino acid residue 19 and 26. For
staining the Histostain-bulk kit® (Zymed, San Francisco,
CA, USA) was used. Biotinylated antimouse IgG was
used as the secondary antibody and peroxidase was
introduced as a streptavidin conjugate. The antibody
reaction was visualised by using a fresh substrate solu-
tion containing aminoethyl carbazol (AEC-kit®, Zymed,
San Francisco, CA, USA). The sections were counter-
stained with hematoxylin, dehydrated and mounted in
glycerol-vinyl-alcohol (GVA mount®; Zymed). For the
negative controls the primary antibody for p53 was
replaced with mouse non-immuno IgG and each set of
staining always included a separate known positive con-
trol. The slides were analysed separately by two inde-
pendent observers blinded from the clinical data. The
immunoreactivity in the malignant cells in each section
was graded according to the number of positively stain-
ing nuclei: < 1% nuclei with a positive reaction as a
negative, >1<6% +, >6% <10% as ++ 11% <40% as +++
and > 40% as ++++.

Statistical analysis

The correlations of gender, age, primary anatomical site
and exposure data were analyzed separately according to
the TP53 gene mutations and p53 immunoreactivity.
The statistical significance of these correlations was
determined with the Fisher’s exact test. Probability
values of less than 0.05 were considered to be statisti-
cally significant. All statistical analyses were performed
using the SPSS software system (SPSS for Windows, ver-
sion 16.0, Chicago, IL).

Results

Mutations in the TP53 gene in head and neck tumours
Judging by SSCP the TP53 gene was mutated in a total
of 26 primary tumours (57%) in the 46 HNSCC patients
with altogether 39 TP53 mutations. Sequence analysis
for the exact site and nature of the genetic alterations
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was possible in 23 tumour samples. Eleven tumour sam-
ples (11/26, 42%) were found to harbour multiple TP53
mutations. In two cases 3 mutations were found in the
same tumour and in nine cases two (Table 3). There
was only a small difference in the prevalence of muta-
tions between different tumour sites (Table 4). The
majority of the mutations were missense mutations (30/
36, 83%). Only one of the mutations was a nonsense
mutation and two were silent. Transversions (17/31,
55%) were more frequent than transitions (14/31, 45%).
The two silent mutations found in codon 170 were simi-
lar (ACG > ACA) and both were found in association
with a similar codon 171 missense mutation (GAG >
GAC). One of these combination mutations was found
in a larynx tumour and the other in oral cavity cancer.
Furthermore, codon 259 was similarly mutated in 4
samples (GAC > GAA).

Correlation of IHC for p53 protein with TP53 mutation
status

The p53 protein was analyzed in sections of the tumour
samples by immunohistochemistry. In positive cases, the
immunoreactive protein was prominent only in cancer
cells and localized in cancer cell nuclei (Figure 1). Of the
46 primary HNSCC tumours, 24 (52%) showed a positive
staining for the p53 protein. In 10 (22%) of the cases, the
staining was extensive or very extensive (+++/++++),
whereas 10 out of the 46 (22%) cases showed weak posi-
tivity (+) for p53 and in four cases (9%) the staining result
was moderate (++). In cases where the tumour staining
was very extensive or extensive for p53, 8 out of 10 cases
(80%) contained also a TP53 mutation, while 17 out of 32
cases (53%) presenting with a negative or weak p53 stain-
ing contained a 7P53 mutation in the tumour. The asso-
ciation between p53 immunohistochemical staining and
the TP53 mutation status was not, however, statistically
significant (P = 0.16, Fisher’s exact test). There was no
correlation between the type of the mutation and the
positivity of p53 immunostaining.

Effect of TP53 mutations on the p53 protein structure
and function

According to the functional and structural domains of
p53, as described in the IARC TP53 mutation database,
the mutations could be classified as follows: 22% (8/36) of
the mutations affect the L2 domain (between codons 164
and 194), which is needed for the correct folding and sta-
bilization of the central part of the protein, 11% (4/36)
affect the LSH (loop-sheet-helix) motif (codons 119-135
and 272-287), and 8% (3/36) affect the L3 domain
(between codons 237-250), directly involved in the interac-
tion between the protein and DNA (Table 3). According
to the IARC database and based on experimental data,
four of the missense mutations lead to non-functional
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Sample Exon(s) Muta-ted Mutation by AA change Change in properties  Structural motif Protein
codon sequencing a function
H&N 12 5 130 CTC>ATC Leu > lle no change LSH NF
5 139 AAG>TGG Lys > Trp +charged > aromatic L ND
7 225 GTT > GCT Val > Ala hydrophobic > L F
polar
H&N 18 5 155 ACC > AGCTGC extra Cys small L ND
H&N 19 5 157 GTC>TTC Val > Phe hydrophobic, small S4 NF®
7 258 GAA > AAA Glu > Lys >aromatic, big S9 NFP
-charge, acidic
> +charge
H&N 20 7 243 ATG>CTG Met > Leu Leu aliphatic L3 (D) NF®
8 297 CAC > TAC His > Tyr no change ND
H&N 31 5 171 GAG > GAC Glu > Asp big >small L2 (S) F
H&N 29 7 259 GAC > GAA Asp > Glu small > big L NFP
H&N 32 5 171 GAG>GAC Glu > Asp big >small L2 (S) F
8 271 GAG > TAG Glu > stop S10 ND
H&N 28 8 14496 16 bases deletion Frameshift ND
mutation
H&N 3 5 159 GCC >ACC Ala >Thr no change S4 Fb
7 254 ATC > GTC lle > Val big > small 59 b
H&N 16 5 130 CTC>TTC Leu > Phe aliphatic LSH NF®
7 245 GGC > GAC Gly > Asp > aromatic L3 (D) NF®
polar > acidic
H&N 4 5 184 -1G Frameshift + charged > H2 (LSH) (D) NF> d
8 283 CGC > CCC Arg >Pro polar
H&N 58 7 259 GAC > GAA Asp > Glu small > big L NFP
H&N 53 5 172 GIT > GCT Val > Ala hydrophobic > polar L2 (S) Fb
H&N 64 7 238 TGT > TCT Cys > Ser hydrophobic > polar L3 (D) NF®
H&N 63 6 189 GCC > GTC Ala > Val polar > hydrophobic L2 () Fb
H&N 51 7 259 GAC > GAA Asp > Glu small > big L NF®
H&N 54 7 259-260 GACTCC > Asp, Ser > no change L NFd
GATCCC Asp, Pro
H&N 56 8 275 TGT > TAT Cys > Tyr small > big, aromatic LSH NF®
H&N 46 6 217 GTG > GCG Val > Ala hydrophobic > polar S7 Fb
H&N 43 155 ACC>TCC Thr > Ser no change L Fo
175 CGC > CAC Arg > His + charged > big, L2 (S) NF 2 <
aromatic
H&N 61 5 171 GAG > GAC Glu > Asp big >small L2 (S) F
Sample Exon(s) Muta-ted Mutation by AA change Change in properties  Structural motif * Protein
codon sequencing function
H&N 60 5 172 GIT>CTT Val > Leu small > big L2 (S) F
7 259 GAC > GAA Glu > Asp big >small L NF®
H&N 69 5 148 GAT>GAG Asp > Glu small > big L Fo
6 221 GAG > GAC Glu > Asp big >small L Fb

a) D = mutation at the DNA contact site, S = structural mutation (according to the IARC classification)
b) NF = non-functional protein according to functional assays by Kato et al. 2003 3°, F = functional protein according to functional assays by Kato et al. 2003 %,
<) gain of function, d) mutations changing proline may also lead to an incorrectly folded protein due to the cyclic side chain of proline, ND = not determinable

proteins (Cys238Ser, Gly245Asp, Glu258Lys, Arg283Pro)
(see Table 3). According to the predicted structure (by
amino-acid conservation rules or structural analysis), sev-
eral of the found mutations probably have functional
impact leading to a non-functional protein (Leul30lle,
Leul30Phe, Thr155Ser, Val157Phe, Val172Ala, Argl75His,
Met243Leu, Asp259Glu, Cys275Tyr). TP53 mutations
leading to non-functional protein were more common in

LSH and L3 motifs than in L2 motif (not statistically sig-
nificant, data not shown).

Comparison of TP53 gene and p53 protein alterations
with patients characteristics and exposure data

Patients with a negative family history of cancer had a
TP53 mutation in 71% of the cases, while patients with
a positive family history (at least two cases of cancer in
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Table 4 Summary of mutations
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Anatomic site Number of cases

mutated cases

Total number (%) of Total number of
TP53 mutations

TP53 mutation frequency in different exons

Exon 5 Exon 6 Exon 7 Exon 8
larynx 24 13/24 (54%) 19 9/19 (47%) 3/19 (16%)  5/19 (26%) 2/19 (10.5%)
pharynx 6 4/6 (67%) 5 2/5 (40%) 0 3/5 (60%) 1/5 (20%)
oral cavity 14 9/14 (64%) 14 6/14 (43%) 0 4/14 (29%) 4/14 (29%)
nose & sinuses 2 0 0 0 0 0 0
all sites 46 26/46 (56.5%) 39 17/39 (43%)  3/39 (8%) 12/39 (31%)  7/39 (18%)

first-degree relatives) had a 7P53 mutation in only 46%
of the cases. TP53 mutations were more common
(although not statistically significantly; p = 0.330) in
tumours of younger patients (Table 1). All three patients
under 39 years, who all had a tumour in the oral cavity,
had a TP53 mutation. Otherwise TP53 mutation status
was not associated with patient characteristics (Table 1).
Interestingly, however, males had a p53 positive tumour
more often than females (see Table 1 not statistically
significant). When taking into account tobacco and alco-
hol consumption, the female patients had lower mean
exposure (1.76 exposure index, see Table 2), than the
males (3.36, p = 0.040). No statistically significant differ-
ence between the sexes was found, however, when the
overall exposure was considered (p = 0.090). Another
interesting finding was that p53 overexpression was
more (although not statistically significantly) prevalent
in laryngeal tumours than in other anatomical sites
(Table 1). All tumours from patients with >45 pack
years of smoking were p53 positive in ihc compared to
those with 0 pack years (p = 0.021) (Table 5). No statis-
tically significant association between p53 alterations
and exposure to alcohol consumption was found. How-
ever, when all the exposures were taken into account, a
positive result (p53 immunohistochemistry, TP53 muta-
tion) seem to be more prevalent in those with a higher
exposure index (Table 6). We also noticed that tobacco
and alcohol exposures were significantly higher in

Figure 1 Immunohistochemical staining of p53 immunoreactive
protein (A, B). Nuclear immunostaining of p53 in head and neck
squamous cell carcinoma. The immunostaining procedure was
performed as described using an anti-p53 monoclonal antibody. A)
Tumour with a very extensive (++++) immunostaining for p53 B)
Tumour with a negative immunostaining for p53.

laryngeal tumours than in oral cavity tumours (p <
0.005). No association was found between a high expo-
sure index and the status with a non-functional protein.
Unfortunately, in 37.5% of cases evaluated for functional
consequences of the TP53 mutations it was not possible
to [19] and that there is still minimal information about
chemicals and 7P53 in head and neck cancer [18] this
calculate the exposure index due to partly lacking expo-
sure data.

Discussion
The most interesting finding was that we found the
same mutation (Asp259Glu most probably leading to a
non-functional p53 protein) in four individuals who all
had chemical exposure: tobacco and alcohol, and in
three cases documented work exposure to chemicals
including pesticides, oil and asbestos. In the fourth case
the information of work exposure was missing.
Although smoking and alcohol in head and neck cancer
have been linked with TP53 mutations before [32-36]
work exposure has not been included in earlier papers.
Furthermore, considering the fact that this mutation has
been described only in five cases before in IARC data-
base is certainly an implication to follow-up. Including
our cases, out of total of nine Asp259Glu mutations
four have been in larynx tumours, which may represent
a preferential site for this mutation. Both of our larynx
cancer patients with this mutation tumour had a high
exposure index (6 and 8) and none of the patients pre-
sented a positive family history for cancer. This may jus-
tify further studies of TP53 Asp259Glu mutation as a
marker of environmental exposure in larynx tumours.
The TP53 mutation frequency in this study is in line
with the one reported by IARC in head and neck

Table 5 Association of p53 aberrations and packyears of
smoking

Packyears  Positive p53 IHC TP53 mutation
patient number in group  patient number in group
0 2/8 (25%) 5/8 (63%)
1-10 4/7 (57%) 5/7 (71%)
11-45 11/24 (46%) 12/24 (50%)
Over 45 7/7 (100%) 4/7 (57%)
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Table 6 Association of p53 aberrations and exposure
index

Exposure  Positive p53 IHC TP53 mutation
Index? (number of patients) (number of patients)
0 1/2 2/2

1 - 3/8 (37.5%) - 3/8 (37.5%)
2 2/6 1/6

3 1/4 3/4

4 4/9 10/20 (50%) 3/9 9/20 (45%)
5 5/7 3/7

6 4/5 5/5

7 3/4 8/10 (80%) 2/4 8/10 (80%)
8 /1 1/1

2 tobacco, alcohol, chemical/dust exposure, see table 2

squamous cell carcinomas (57% in this study; 47.5% in
IARC TP53 mutation database [19]. According to the
IARC TP53 mutation database, mutations in head and
neck cancers occur frequently in codons 238-248, which
is a hotspot region. In our material this region was
underrepresented with only 3/26 mutations. Among this
series, 11/26 (42%) tumours contained multiple 7P53
mutations. Although multiple 7P53 mutations have ear-
lier been described in the literature in HNSCCs [37-40],
they are not as commonly reported as tumours with a
single TP53 mutation. Our study is too small to pursue
multiple mutations in connection with other parameters.

Altogether 13 tumours with 7P53 mutations in our
series probably harbour a non-functional protein for
various reasons. For instance, zinc is essential for the
function of p53, because p53 does not adopt the correct
conformation in the absence of zinc [41,42]. Thus muta-
tions in the residues involved in the interaction with
zinc, like Cys238Ser in this study, will result in a non-
functional p53. According to recent data a mutation
that alters the stability of the protein (structural
mutants; 7 tumours in our series) is more likely to dis-
rupt all functions of the protein, whereas a mutation
within a contact residue (contact mutants; 4 cases in
our series) will probably be more selective in affecting
the transcriptional activity of p53 [43,44]. Both classes
of mutant p53 proteins commonly accumulate to high
levels in tumour cells and are defective for wild-type in
p53 functions [43]. It remains to be tested whether any
relation of the functional effects of the mutations to
exposure types or total exposure exists. Our series is
small and the fact that we did not find such correlations
does not rule them out.

In accordance with Koch and co workers (1995) our
study implicated young age to associate with a higher
TP53 mutation frequency in the tumours [45]. Interest-
ingly, all the three patients under 39 had a squamous
cell cancer of the oral cavity and all these tumours har-
boured a TP53 mutation. Petitjean et al. (2007a), on the
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basis of the IARC TP53 mutation database, reported
that the mean age at onset in carriers of a TP53 muta-
tion leading to a functional protein was higher than the
age of patients with a non-functional protein [25]. Thus,
the penetrance of a mutation may be related to its
degree of loss of transcriptional activity, which is not
surprising. Similar implications have been described on
basis of p53 protein expression. De Paula and co-
workers (2009), who evaluated 724 primary HNSCC in
young (under 45 years) and older (46-92 years) patients,
reported a significantly higher p53 expression (p < 0.05)
and a higher incidence of oral cavity tumours in
younger patients [46]. On the other hand, Regezi et al.
(1999), who evaluated and compared the expression of
the cell cycle proteins p53, p21, Rb and MDM?2 in ton-
gue cancer patients aged 35 and younger and those aged
75 or older, reported equivalent p53 mutant protein
expression [47]. The possible association with age in dif-
ferent head and neck cancers still requires confirmation
in larger patient materials.

Positive findings in p53 immunohistochemistry have
especially earlier, been interpreted as indicating inactiva-
tion of the TP53 gene on the basis of the knowledge
that the half-life of the wild-type protein is too short to
permit detection, whereas the mutant protein is stable
[48]. However, the TP53 gene may also harbour muta-
tions that do not result in its stabilization, or deletions
that inhibit transcription altogether. Alternatively, p53
function may be inhibited by epigenetic events, such as
enhancing its degradation or by interference with
proteins controlling its transcriptional activity [49].
Furthermore, p53 protein may be induced in cells by
DNA-damaging chemical exposure (for reviews see
[50,51]) through posttranslational modifications [52]. In
agreement with previous studies [48,53], we found that
p53 overexpression was a common event in HNSCC. In
newest papers immunohistochemically positive cases
associate with 7P53 mutations in head and neck cancers
[48,54,55] and our paper does not contradict this.

In the present study, we found that a positive p53
immunohistochemistry was more common among heavy
smokers than among non-smokers, as reported earlier
[54,56]. However, we did not find a correlation between
the amount of tobacco consumed and the frequency of
TP53 mutations. Vihikangas and co workers (2001)
noticed that in lung cancer TP53 mutations occur more
commonly in smokers and ex-smokers than in never-
smokers [57]. Other reports pertinent to tobacco expo-
sure, using various methods to detect 7P53 mutations,
have given conflicting results. Studies showing a positive
association between TP53 mutation and tobacco smoke
in patients with head and neck carcinoma are, however,
more numerous e.g. [32-36] than studies with no asso-
ciation e.g. [38,58,59]. Unfortunately, information on
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alcohol consumption was lacking in eight patients in our
material. Interestingly, we also found that the tumours
from patients with a negative family history for cancer
contained TP53 mutations more often than tumours
from patients with a positive a family history. Consider-
ing the age correlation and family history data, our
results may be interpreted as supporting the environ-
mental aetiology of the TP53 mutations.

We noticed that tobacco and alcohol exposures were
statistically significantly higher in laryngeal tumours than
in oral cavity tumours and p53 overexpression was more
prevalent in laryngeal tumours than in other anatomical
sites. Recently De Paula and co-workers (2009) in a large
material of over 700 patients noted a correlation between
p53 immunohistochemically positive tumours and anato-
mical site [46]. The exposure to chemical carcinogens e.
g. in smoke may not be even in different locations or the
sensitivity of locations may vary. Another level of varia-
tion is the inter-individual susceptibility according to
genetic factors. A small proportion of individuals exposed
to potential carcinogens might develop the disease and
intrinsic susceptibility to environmental exposure most
probably plays a role also in head and neck cancer see e.
g. [60,61]. Furthermore, in our series females with a head
and neck cancer had less exposure than males, which
supports the reported higher susceptibility of women to
carcinogens like cigarette smoke [62].

Conclusions

Our study shows implications of p53 aberrations being
associated with the environmental exposure in head and
neck cancer. Regardless of how the data are looked at, a
trend for a higher frequency of p53 alterations remains
among those with higher exposure. In accordance with
earlier literature (see e.g. Viahidkangas 2003), our results
thus justify further studies of p53 alterations as a bio-
marker of environmental exposure in head and neck
cancers. Especially, the mutation Asp259Glu (GAC >
GAA) most probably leading to a non-functional p53
protein, which was found in four tumours in this series,
may justify further studies as a marker of environmental
exposure in larynx tumours.
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