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Abstract

Raman spectroscopy could offer non-invasive, rapid and an objective nature to cancer diagnostics.
However, much work in this field has focused on resolving differences between cancerous and non-
cancerous tissues, and lacks the reproducibility and interpretation to be put into clinical practice.
Much work is needed on basic cellular differences between malignancy and normal. This would
allow the establishment of a clinically relevant cellular based model to translate to tissue
classification. Raman spectroscopy provides a very detailed biochemical analysis of the target
material and to 'unlock’ this potential requires sophisticated mathematical modelling such as neural
networks as an adjunct to data interpretation. Commercially obtained cancerous and non-
cancerous cells, cultured in the laboratory were used in Raman spectral measurements. Data
trends were visualised through PCA and then subjected to neural network analysis based on self-
organising maps; consisting of m maps, where m is the number of classes to be recognised. Each
map approximates the statistical distribution of a given class. The neural network analysis provided
a 95% accuracy for identification of the cancerous cell line and 92% accuracy for normal cell line.
In this preliminay study we have demonstrated th ability to distinguish between "normal" and
cancerous commercial cell lines. This encourages future work to establish the reasons
underpinning these spectral differences and to move forward to more complex systems involving
tissues. We have also shown that the use of sophisticated mathematical modelling allows a high
degree of discrimination of 'raw' spectral data.

Introduction their potential advantages in offering non-invasive, rapid
A range of optical methodologies including fluorescence,  and objective diagnostics. Applications are being tested in
Fourier transform infrared and Raman spectroscopies  such fields as microbial identification and cancer detec-
have attracted much interest in biomedicine because of  tion [1-10]. In cancer detection, research has focused on
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the potential to discriminate and resolve differences
between cancer and normal tissues [11-13]. However,
much of this work lacks the reproducibility and interpre-
tation that would enable spectroscopy diagnostics to
translate, 'from the bench to the bedside'. In order to
translate this technique effectively to clinical practice
much work is needed on basic cellular differences
between cancerous and normal cells. Once these are
appreciated, translating the work through to tissue would
have a higher impact.

Raman spectroscopy has the highest specificity for chemi-
cal composition of target material amongst optical tech-
niques. This, along with the relatively short spectral
collection time, which can range from seconds to min-
utes, offers the possibility of rapid and sensitive diagnosis.
Raman spectroscopy could therefore be potentially used
to detect cancer at a biomolecular level prior to the mor-
phological changes that the pathologist currently relies
upon to make a diagnosis; making this technique
extremely advantageous for early intervention. Raman
spectroscopy relies on laser light (photons) interacting
with molecules within the target material, causing them to
vibrate. As a result, the photons are 'scattered' resulting in
a frequency shift that is related to the energy of specific
molecular vibrations. These vibrations are specific for par-
ticular molecular bonds and thus a biochemical 'finger-
print' of the target material can be established.

Biological cells are a complex mixture of molecules
including proteins, nucleic acids, lipids and sugars
enclosed within a membrane which is of itself a complex
structure at the bio molecular level. The concentrations of
these molecular constituents will vary within the cell;
between cells of the same type with differing stages of
growth and physiological function and between different
cell types. This application of Raman spectroscopy as a
diagnostic tool is therefore difficult, as its high biochemi-
cal specificity will detect all of these intra- and inter- cellu-
lar differences, giving complex backgrounds against which
any diagnostic discrimination on the basis of disease-
related changes must be made. Therefore, it is paramount
that initial exploratory work to evaluate Raman spectros-
copy as a diagnostic tool is undertaken on well character-
ised cells cultured under standardised laboratory
conditions. Once spectral differences are understood
using these simple systems, experimental work can shift to
tissues where other factors such as blood and connective
tissue will interfere with signals. Establishment of a clini-
cally relevant cell-based model is therefore an important
first step in this incremental process.

In order to obtain as much information as possible from
the Raman spectra it is necessary to have an analysis tool
capable of detecting small variations in spectra. Multivar-
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iate analysis methods such as Principal component analy-
sis (PCA) have been employed[14] and indeed were used
this study. However, PCA essentially rotates and scales the
data allowing information to be lost in this scaling proc-
ess. If differences in systems are large then this causes no
problem. The possibility is that cellular biochemical dif-
ferences between cancer and normal may be subtle; espe-
cially when dysplasia and very early changes are
considered. PCA could potentially miss these subtle
changes and therefore more advanced mathematical
modelling systems are needed to interrogate the data.
Neural networks are essentially non-linear statistical data
modelling tools which find patterns in data[15]. The clear
delineation between neural networks and computing are
that functions are preformed collectively in a parallel
series by the neurones, whereas basic computing relies on
subtasks performed by individual units. By this rational
neural networks are capable of learning, analogous with
artificial intelligence. In order to optimise results from
this technique, the system is 'trained' with data prior to
test data being applied to the system. This system can
appreciate small variations in datasets making it extremely
advantageous in spectroscopic analysis.

Thyroid cancer is the most common endocrine malig-
nancy|[16]. The usually clinical presentation is with a neck
mass, which may occasionally cause compression of the
trachea, leading to respiratory embarrassment. The dis-
ease generally affects young females although an aggres-
sive variant occurs in the elderly population and carries a
very poor prognosis[17]. The diagnosis of thyroid cancer
can be fraught with uncertainty. Initially a fine needle
aspiration of the lump is undertaken by the clinician. This
may not give adequate results due to sampling error or as
in the case of follicular disease no comment can be made
on tissue architecture or invasion; meaning further tissue
is needed for certain accuracy. In cases where the lump is
small or difficult to locate, the fine needle aspiration may
have to be undertaken with ultrasound guidance. When
cytological results prove inadequate; diagnosis is con-
firmed on excision biopsy when part of the gland is
removed. Results from this biopsy usually take 2 to 3
weeks. Once cancer is diagnosed patients may have to
undergo a second operation to remove the remainder of
the thyroid. Spectroscopy would greatly speed up the
diagnostic process whether pre-operatively or in the thea-
tre setting; also a pre-operative definitive diagnosis would
prevent the morbidity and possible mortality from a sec-
ond operation.

The aim of this study was to identify whether Raman spec-
troscopy combined with advanced mathematical model-
ling (neural networks) could discriminate between 2
commercial thyroid cell lines; an anaplastic cancer variety
and a 'normal’ variety.
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Materials and methods

Cell culture and preparation for spectroscopy

Human thyroid follicular epithelial cells (Nthy-ori 3-1),
(a'normal' commercial cell line) and human thyroid ana-
plastic carcinoma cell line (8305C) were obtained from
the European Collection of Cell cultures (ECACC). The
'normal’ cell line was originally obtained from normal
adult thyroid tissue and transfected with a plasmid encod-
ing for the SV40 large T gene|18]. These cells were cultured
in RPMI (Sigma, USA), along with 5% L-glutamine
(Sigma, USA), and 10% Foetal Calf serum (FCS). The ana-
plastic cells were originally established from an undiffer-
entiated carcinoma in a female patient|[19]. These cells
were grown in Minimum Essential Medium Eagle
(EMEM) with Hank's Salts (HBSS) (Sigma, USA), with 5%
L-glutamine (Sigma, USA), 1% non - essential amino
acids (Sigma, USA), and 10% FCS. Both cell lines were
maintained in a 5% carbon dioxide incubator at 37°C.
Prior to the acquisition of spectra, the cells were washed
with PBS (phosphate buffered saline) 3 times, followed by
suspension in 10% formalin for fixation for 10 minutes.
Once fixed, the cells were re-suspended in PBS. A sample
of PBS containing suspended cells was then pipetted onto
a quartz slide and allowed to air dry. Once air dried
Raman spectroscopy was performed.

Raman spectroscopy

Raman spectra were obtained using a Renishaw 'System
1000' Raman microscope. Excitation was provided by a
Sacher Lasertechnik Littrow external cavity laser set at 783
nm. Detection of the Raman scattered light was per-
formed with a Renishaw RenCam NIR enhanced CCD
camera. This camera is thermoelectrically cooled. The
spectrometer was attached to a Leica DMLM microscope
and the scattered light collected from the sample, via a
50x microscope objective. The spectrometer used holo-
graphic notch filters to remove Rayleigh scattered light
from the collected light. The Raman scattered light was
then dispersed across the CCD array detector by a single
stage, 250 mm focal length grating spectrometer. The
microscope was equipped with a motorised XYZ position-
ing stage (Prior) with integrated position sensors on the X
and Y axes (Renishaw). Instrument control and data col-
lection was performed with Renishaw WIiRE software
which operates within Galactic GRAMS software. Data
acquisition time was 20 seconds for each cell.

Data Analysis

Initially descriptive statistics were used to visualise the
spectral graphs with Principal Component Analysis (PCA)
to allow visualisation of the data trend. A neural architec-
ture based on self-organising maps (SOM) was developed
in VC++ to classify normal and anaplastic cells.

http://www.headandneckoncology.org/content/1/1/38

Neural Architecture

A self-organising map (SOM) (20) is extremely useful as a
nonparametric classifier due to its unsupervised residual
plasticity. It classifies input patterns into groups based on
the similarity between the patterns. Euclidean distance is
used as a distance metric in SOM. A self-organising map is
a single layer feed forward network where the output
nodes are arranged in low dimensional grid. Each input is
connected to all output neurons. Attached to every neuron
there is a weight vector with the same dimensionality as
the input vectors. The number of input dimensions is usu-
ally much higher than the output grid dimension.

We used SOM in a supervised manner and the neural
architecture developed consists of m maps, where m is the
number of classes to be recognised because of computa-
tional simplicity. Each map approximates the statistical
distribution of a given class. This allows a self-adjusting
process to be carried out by all the neurons in each local
map and preserves the self-organisation paradigm by con-
sidering as many maps (j = 1,..., m where m is the number
of classes) as the various classes which are taken into con-
sideration to accomplish the classification task. In the

Read Input
pattern

Find minimum Find minimum

Euclidean distance(E1) Euclidean distance(E2)

es
Nthy-ori3 1

Figure |

Flow chart illustrating the testing phase of the neural
network system for two classes where Map| and
Map2 are two SOMs trained on Nthy-ori 3-1 and
8305C cells respectively.
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Table I: Table illustrating the number of cells classified as non-cancerous or cancerous based on the neural network data.

Human Thyroid Epithelial Cells
(Non-cancerous cell line)

Human anaplastic cell line
(Cancerous cell line)

Human thyroid epithelial cells 48 4
(Non-cancerous)

Human anaplastic cells 3 6l
(cancerous)

The Out of 52 human thyroid epithelial cells 48 were correctly classified; 4 were incorrectly classified as being cancerous. When the 64 anaplastic
cancerous cells similarly analysed, 3 were wrongly classified as normal. algorithm was correct for 95% of the cancerous cell line and 92% for the

normal cell line.

training phase, each network is trained with observations
belonging to an individual class in parallel. As we have
two classes (Nthy-ori 3-1/8305C) the system consists of
two maps and each map was 'trained' to recognise the
Nthy-ori 3-1 and 8305C cells line respectively, using one-
third of the original data set using VC++ software system.

Once the network is trained, a testing phase can take place
where autonomous classification is carried out. At a cer-
tain time step t, a measurement vector x from the remain-
ing data is presented to the network. The Euclidean
distance measure is computed over all neurons of both
the maps and the winner map (with the minimum dis-
tance) is considered as the estimated recognised class. Fig-
ure 1 illustrates the flow chart of the testing phase of the
system containing two SOMs Map1 and Map2 trained for
two classes Nthy-ori 3-1 and 8305C respectively.

Results

In total 52 spectra were obtained from the Nthy-ori 3-1
cells and 64 spectra from the 8305C cells. Figures 2 and 3
below illustrate a typical Raman spectral graph from the
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Figure 2

A typical Raman spectrum from the Human thyroid
epithelial cell (Nthy-ori 3-1); a non-cancerous cell
line.

non-cancerous and cancerous thyroid cell lines. Figure 4 is
the PCA plot of cancerous and non-cancerous Raman
data. The PCA analysis where the 1stprincipal component
incorperated 47% of the variance and the 2nd component
26%; (total of 76% variance for the first 2 components),
is not totally discriminatory yet does show a distinct clus-
tering of normal and cancerous cell lines but the overlap
is too great to be diagnostic. Table 1 highlights the neural
network result for the Raman data, providing a 95% sen-
sitivity for the cancerous cell line and 92% sensitivity for
normal cell line.

Discussion

Our study has demonstrated that Raman spectroscopy,
coupled with neural network analysis is able to discrimi-
nate between cancer and non-cancer cells in a simple
model system with a high degree of accuracy. The results
of the neural network demonstrate a clear distinction
between the 2 cohorts 95%, and 92% sensitivity. The
obvious peak differences at 780 nm and 830 nm from pre-
vious literature are thought to correspond to DNA: O-P-O
backbone stretching and nucleic acids [20-22]. It would
be expected that cancerous cells would have a greater

‘ Human Anaplastic Cancer Cell ‘
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Figure 3
A typical Raman spectrum from a Human anaplstic
thyroid cancer cell (8305C); a cancerous cell line.
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PCA of scaled and smoothed spectra of Nthy-ori 3-1 and
8305C cells
2

ull

A 8305C

PCA2
(29%)

O Nthy-ori 3-1

PCAT1 (47%)

Figure 4

The results of PCA comparing the non-cancerous
(Nthy-ori 3-1) and cancerous (8305C) cell lines from
the Raman spectra results.

amount of nuclear matter due to the increased mitosis
they undergo. The greater peak intensity in the 1656/8
region in the cancer cohort is attributed to the Amide I: a-
helix.

Similar work has been reported by Crow and colleagues in
2005[23]. They used Raman spectroscopy and a diagnos-
tic algorithm to differentiate prostatic carcinoma cell
lines. In their study, the cells were cytospun and the pellet
placed on a calcium fluoride slide for spectroscopic anal-
ysis. Therefore; the spectra were collected from a pellet
rather than single cells. Their results proved highly accu-
rate with sensitivities of 98% and their findings correlate
with ours in that nucleic acid components, DNA back-
bone and a-helix proteins differ between the malignant
groups. Their work did not have a non-cancerous cell line
so direct comparisons with this study are impossible, yet
differing degrees of malignant aggressiveness were corre-
lated with changes in basic biochemical properties in the
regions demonstrated in this study.

Jess and co-workers (2007) studied Raman spectroscopy
in differentiating cervical cells|21]. Spectra were com-
pared from a normal human keratinocyte cell line and a
cancerous line. The primary human keratinocyte line was
then infected with a virus containing the gene for HPV 16
E7, and further spectra taken to discriminate between sim-
ilar cells expressing differing proteins. PCA was used for
discriminatory purposes and this gave >90 sensitivity for
live cells and slightly higher for a 'fixed' cohort.

In this study PCA illustrated a definite localisation of each
cohort but this would not be significant enough for diag-
nostic purposes. However, neural network analysis pro-
vided a superior analytical tool with its greater than 90%
accuracy for either cell line. Whilst cancer versus non-can-
cer is being analysed multivariate statistical methods such

http://www.headandneckoncology.org/content/1/1/38

as PCA, linear discriminant analysis and classical least
square fitting have been shown to confer high accu-
racy| 14]. However, Raman spectroscopy is highly specific
in detailing biochemical composition, it is therefore nec-
essary to have similar precision in 'un-locking' the data,
otherwise subtle changes such as those seen in the pro-
gression of dysplastic tissue to carcinoma may well be
missed. In this study neural network analysis conferred
greater accuracy than PCA in cell line discrimination; and
this may well need to be the tool of choice when complex
systems such as tissues are analysed.

Conclusion

In this preliminay study we have demonstrated an ability
to successfully distinguish between "normal" and cancer-
ous commercial cell lines. This encourages future work to
establish the reasons underpinning these spectral differ-
ences and to move forward to more complex systems
involving tissues. We have also shown that the use of
sophisticated mathematical modelling allows a high
degree of discrimination of Raman data.
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